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Section 5

Fourier Series

The concept of Fourier series is introduced using an
analogy with splitting vectors up into components.

The symmetry properties that enable us to predict that
certain coefficients are zero are presented.
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Motivation

We mentioned at the start of the last section that sine
waves have a special property in relation to linear systems
[recall that proving this was the same as shift invariance
was left as an exercise then discussed at end of Section 4].

A sine wave at the input leads
to a sine wave (same fre-
quency but possibly different
phase and amplitude) at the
output.

It would therefore be useful to be able to express an
arbitrary signal in terms of a sum of sine waves.
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Motivation: Car Suspension

Supposing we know that our car suspension will start to
oscillate (bounce up and down uncomfortably) at
frequency f .

We want to measure a variety of typical road profiles and
calculate how much of frequency f they each contain
(with the car travelling at a particular speed).

This will tell us which combinations of road profile and
speed are likely to be a problem.

The concept of a Fourier series enables us to represent
the road profile as the sum of a set of sinusoidal
components at different frequencies.
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Splitting up Vectors

We want to express a signal f (t) in the range
−π ≤ t ≤ π in terms of some basic signals, i.e. sine
waves. Let’s look first at how we do a similar thing with
vectors.

Consider how we express the arbitrary vector r in terms of
the basis vectors i and j.

i

j

r = ai+ bj

where

a = r·i/i·i b = r·j/j·j

The basis vectors are orthogonal: i·j = 0.
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Basis Functions

Just as we represent r using orthogonal basis vectors, we
want to represent f (t) in the range −π to π using
orthogonal basis functions. For r in 2D we only need two
vectors, but for f (t) we need an infinite number of
functions – these are:

1 (i.e. a constant term)
cos(t) cos(2t) cos(3t) cos(4t) . . .
sin(t) sin(2t) sin(3t) sin(4t) . . .

If n and m are positive integers greater than zero.

∫ π
−π cos(nt) sin(mt) dt = 0∫ π
−π cos(nt)× 1 dt = 0∫ π
−π sin(nt)× 1 dt = 0∫ π

−π
cos(nt) cos(mt) dt =

{
0 n 6= m

π n = m∫ π

−π
sin(nt) sin(mt) dt =

{
0 n 6= m

π n = m∫ π

−π
1× 1 dt = 2π

So, using
∫ π
−π p(t)q(t) dt as our “dot product for

functions”, the basis functions are orthogonal.
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Fourier Series

If r = ai+ bj, we obtain a and b by dotting r with i and
j respectively:

r · i = a i · i
r · j = b i · i

since i · j = 0. Thus a = (r.i)/(i.i) and b = (r.j)/(j.j).

Now, if we have a function f (t) which can be expressed
as a linear combination of our harmonic basis functions,
i.e.

f (t) = a0 +
∞

∑
n=1

an cos(nt) +
∞

∑
n=1

bn sin(nt)

[a0 is a constant]. We find the an and the bn by
exploiting the fact that our basis functions are orthogonal
under integration between −π and π so that:∫ π

−π
cos(nt)f (t) dt = an

∫ π

−π
cos(nt) cos(nt) dt

and ∫ π

−π
sin(nt)f (t) dt = bn

∫ π

−π
sin(nt) sin(nt) dt
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Thus we are able to find an and bn from the above
expressions:

an =
∫ π
−π cos(nt)f (t) dt∫ π
−π cos(nt) cos(nt) dt

=
1

π

∫ π

−π
cos(nt)f (t) dt

bn =
∫ π
−π sin(nt)f (t) dt∫ π
−π sin(nt) sin(nt) dt

=
1

π

∫ π

−π
sin(nt)f (t) dt

a0 =
∫ π
−π 1×f (t) dt∫ π
−π 1×1 dt

=
1

2π

∫ π

−π
f (t) dt

f (t) = a0 +
∞

∑
n=1

an cos(nt) +
∞

∑
n=1

bn sin(nt)
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Fourier Series: Example 1

Represent the square wave
f (t) as a Fourier series.

−2π −π 2ππ

1

−1
t

f (t)

an =
1

π

∫ π

−π
cos(nt)f (t) dt = 0 n 6= 0

bn =
1

π

∫ π

−π
sin(nt)f (t) dt =

2 (1− (−1)n)

nπ

a0 =
1

2π

∫ π

−π
f (t) dt = 0

The an integrands are odd while the bn integrands are
even. Thus, we can model the square wave (of period
2π) function f (t) (odd and of period 2π) using:

f (t) = a0 +
∞

∑
n=1

(an cos(nt) + bn sin(nt))

=
∞

∑
n=1

2 (1− (−1)n)

nπ
sin(nt)

=
4

π

[
sin(t) +

sin(3t)

3
+

sin(5t)

5
+ . . .

]
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Fourier Series Properties

1. We can use any range of length 2π instead of
−π ≤ t ≤ π in the Fourier formulae. For example,
0 ≤ t ≤ 2π is equally OK.

2. We are only modelling the function f (t) in the
specified range (eg. −π to π, or 0 to 2π). Outside this
range the model will just repeat with period 2π.

This is fine if the function we wish to model is periodic
itself, but if the function is not periodic the Fourier
model will probably only be useful over the range on
which it was built.
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Fourier Series Example 2

Represent f (t) = et as a Fourier series between −π and

π.

an =
1

π

∫ π

−π
cos(nt)et dt =

(−1)n (eπ − e−π)

π (1 + n2)
n 6= 0

bn =
1

π

∫ π

−π
sin(nt)et dt =

−(−1)n (eπ − e−π) n

π (1 + n2)

a0 =
1

2π

∫ π

−π
et dt =

eπ − e−π

2π

Thus, in the range −π < t < π we can model the
function f (t) = et using:

f (t) = a0 +
∞

∑
n=1

(an cos(nt) + bn sin(nt))

=
eπ − e−π

π

(
1

2
+

∞

∑
n=1

(−1)n

1 + n2
[cos(nt)− n sin(nt)]

)

≈ 3.68− 3.68 cos(t) + 3.68 sin(t)
+1.47 cos(2t)− 2.94 sin(2t)− . . .
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Fourier Model of Exponential

-3π -2π -1π 1π 2π 3π

Fourier model of et

built on range −π
to π. Repeats every 2π

t

et
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Symmetric Signals

ODD function f (−t) = −f (t) eg: sin(t)
EVEN function f (−t) = f (t) eg: cos(t)

cos(t)

t

The an terms model
the EVEN component
in the function

sin(t)

t

The bn terms model the
ODD component in the
function

1

t

The a0 term models the
mean value of the func-
tion
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Avoiding Integration

If we can spot a symmetry in the function to be
represented then we can avoid evaluating one or more of
the Fourier integrals.

No even component ⇒ all an = 0, n 6= 0
No odd component ⇒ all bn = 0
Zero mean ⇒ a0 = 0

t

EVEN function with non-
zero mean: bn = 0

t

Purely ODD function
with zero mean: an = 0
and a0 = 0

t

Function with zero mean:
a0 = 0
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Fourier Series: Example 3

Find the Fourier series representation in the range −π to
π for the function f (t) below.

t

π
2

π−π

f (t)
EVEN function with
zero mean: bn = 0 and
a0 = 0

We only have to calculate an, n 6= 0

an =
1
π

∫ π
−π cos(nt)f (t) dt

= 1
π

∫ 0
−π cos(nt)(−t − π/2) dt

+ 1
π

∫ π
0 cos(nt)(t − π/2) dt

= 2
π

∫ π
0 cos(nt)(t − π/2) dt

= 2
n2π

((−1)n − 1) =

{
0 , n even
−4
n2π

, n odd

so the Fourier series is:

f (t) =
−4

π

[
cos(t) +

1

9
cos(3t) +

1

25
cos(5t) + . . .

]
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Fourier Series: Example 4

Find the Fourier series representation in the range −π to
π for the function f (t) = cos(t + π/4).

This function has a mean value of zero so a0 = 0.

an =
1

π

∫ π

−π
cos(nt) cos(t + π/4) dt n 6= 0

=
1

2π

∫ π

−π
cos(nt + t +

π

4
) + cos(nt − t − π

4
) dt

=
1√

2
, when n = 1 and 0 otherwise.

bn =
1

π

∫ π

−π
sin(nt) cos(t + π/4) dt

=
1

2π

∫ π

−π
sin(nt + t +

π

4
) + sin(nt − t − π

4
) dt

=
−1√

2
, when n = 1 and 0 otherwise.

so the Fourier series is:

f (t) =
cos(t)− sin(t)√

2
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Section 5: Summary

Periodic functions, (so far only with period 2π), can be
represented using the Fourier series.

We can use symmetry properties of the function to spot
that certain Fourier coefficients will be zero, and hence
avoid performing the integral to evaluate them.

• Functions with zero mean have a0 = 0.
• Purely odd functions have an = 0.
• Purely even functions have bn = 0.

Segments of non-periodic functions can be represented
using the Fourier series in the same way. The Fourier
series representation just repeats outside the range on
which it was built.
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Section 6

General Fourier Series

The Fourier series for arbitrary period is presented.

We compare three techniques for calculating a general
range Fourier series: direct integration, using a related
series of delta functions, and using the Maths Data Book.

During the direct integration example, some symmetry
arguments for simplifying integrals are illustrated.
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General Range
If we want to model a periodic signal with period other
than 2π, or a section of a non-periodic signal of length
other than 2π we need a more general formula.

To model a function f (x) over the range 0 to L, we
choose a variable x̃ such that x/x̃ = L/(2π), so that we

can substitute x̃ = 2π
L x ,

(
⇒ dx = L

2πdx̃
)

in our Fourier

formulae (note: taking a range of 0 to 2π rather than
−π to π). Expanding our f (x) as a linear combination
of sines and cosines of period L gives us:

f (x) = a0 +
∞

∑
n=1

[
an cos

(
2πnx

L

)
+ bn sin

(
2πnx

L

)]
Multiplying by cos

(
2πmx
L

)
or sin

(
2πmx
L

)
and integrating

from 0 to L, reduces to our previous equations, giving:

an =
2

L

∫ L

0
cos

(
2πnx

L

)
f (x) dx

bn =
2

L

∫ L

0
sin

(
2πnx

L

)
f (x) dx

a0 =
1

L

∫ L

0
f (x) dx

The fraction 2π
L is often written as ω0 and called the

fundamental angular frequency.
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General Range Example 1

Represent the signal f (x) =
x(1− x) as a Fourier series
with period 1, based on the
range 0 to 1. x

x(1− x)

10

an = 2
∫ 1

0
cos(2πnx)x(1− x) dx = − 1

n2π2

bn = 2
∫ 1

0
sin(2πnx)x(1− x) dx = 0

a0 =
∫ 1

0
x(1− x) dx =

1

6

So the Fourier series is:

f (x) =
1

6
− cos(2πx)

π2
− cos(4πx)

4π2
− cos(6πx)

9π2
− . . .

Note that this is an even function with period = 1.
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General Range Example 2

Represent the signal f (x) =
δ(x − L/4) − δ(x − 3L/4)
as a Fourier series based on
the range 0 to L.

L

f (x)

We are told that the period is L, so consider the signal
repeating with period L.

L−L

f (x)

This signal is purely ODD with zero mean. We therefore
only need to calculate bn.
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bn =
2

L

∫ L

0
sin

(
2πnx

L

)
f (x) dx

= 2
L

∫ L
0 sin

(
2πnx
L

) [
δ
(
x − L

4

)
− δ

(
x − 3L

4

)]
dx

=
2

L

[
sin

(
2πnL

4L

)
− sin

(
6πnL

4L

)]
(sifting!)

=
2

L

[
sin
(nπ

2

)
− sin

(
3nπ

2

)]
=

4

L
sin
(nπ

2

)
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bn =
4

L
sin
(nπ

2

)
This is zero when n is even. Tabulate sin

(
nπ
2

)
when n

is odd.

sin
(
nπ
2

)
n n+1

2 −1(
n+1
2 ) n+3

2 −1(
n+3
2 )

1 1 1 −1 2 1
−1 3 2 1 3 −1
1 5 3 −1 4 1
−1 7 4 1 5 −1

Thus

bn =

{
0 n even
4
L(−1)(

n+3
2 ) n odd

So the Fourier series is:

f (x) = 4
L

[
sin
(

2πx
L

)
− sin

(
6πx
L

)
+ sin

(
10πx
L

)
− . . .

]
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More Integral Avoidance

Notice how easy it is to calculate the Fourier series of a
signal formed only of delta functions. By integrating the
delta function series we can derive the Fourier series for
square waves and triangle waves.

t

Integrate

Integrate

t

t
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Pick the Start of the Period Carefully

If you wish to find the Fourier series of a waveform such
as

L−L

f (x)

it is difficult to use formulae with limits such as

an =
2

L

∫ L

0
cos

(
2πnx

L

)
f (x) dx

because it is not clear what to do about the delta
functions that coincide with the upper or lower limits of
the integral.

Instead, choose your period of length L to start at a
different point. For example:

an =
2

L

∫ 3L
4

−L
4

cos

(
2πnx

L

)
f (x) dx
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Three Methods

L

1

−1

f (x)

There are three ways to find the Fourier series for f (x)
between 0 and L.

1. Use the general range Fourier formulae directly.

2. Differentiate the waveform twice to get a sequence of
delta functions. Find a Fourier series for the delta
functions, then integrate the series twice to get the
Fourier series of the triangular wave.

3. Look up the Fourier series of a similar waveform in the
Maths Data book and use a substitution of variables to
find the series for the waveform we require.
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Method 1: Direct Integration

The triangular waveform is entirely ODD and has zero
mean. Thus a0 = 0 and an = 0. We only need to find bn.

To do this we need an algebraic representation of the
waveform.

f (x) =


−4x

L , 0 < x < L
4

4x
L − 2 , L

4 < x < 3L
4

4− 4x
L , 3L

4 < x < L

From this we can write down an expression for bn.

bn =
2

L

∫ L

0
sin

(
2πnx

L

)
f (x) dx

=
2

L

∫ L
4

0
sin

(
2πnx

L

)(
−4x

L

)
dx (1)

+
2

L

∫ 3L
4

L
4

sin

(
2πnx

L

)(
4x

L
− 2

)
dx (2)

+
2

L

∫ L

3L
4

sin

(
2πnx

L

)(
4− 4x

L

)
dx (3)
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There is clearly a symmetry between the terms f (x) and
sin
(

2πnx
L

)
[consider even or odd behaviour of

sin
(

2πnx
L

)
f (x) about L/2 and L/4].

All terms with even n are zero, and all terms with odd n

are equal to twice integral (2) or four times integral (1).
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Therefore, when n is even bn = 0, and when n is odd we
can simplify our calculation by, for example, calculating
4×integral 1, to give:

bn =
8

n2π2

(nπ

2
cos
(nπ

2

)
− sin

(nπ

2

))
But as we know n is odd, the cos() term is always zero

and we can write
[
− sin

(
nπ
2

)]
= (−1)(

n+1
2 )

⇒ bn =


0, n even

8

n2π2
× (−1)(

n+1
2 ) n odd

Giving a final Fourier series for f (x) =

8

π2

[
− sin

(
2πx

L

)
+

sin
(

2π3x
L

)
9

−
sin
(

2π5x
L

)
25

+ . . .

]

If we want to write this algebraically, we need to limit n

to only odd values. Let n = 2m− 1 with m taking
integer values from 1 to ∞.

f (x) =
8

π2

∞

∑
m=1

(−1)m

(2m− 1)2
sin

(
2πx(2m− 1)

L

)
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A brief aside on delta functions

Reminder of what we should already know:

b

−a

x0

f1(x)

x

b

−a
x0

f2(x)

x

For f1(x): f ′1(x) = 0 for x > x0 and x < x0, and similarly
for f ′2(x).

Also we have that

∫ x0+ε

x0−ε
f ′1(x) dx = [f1(x)]

x0+ε
x0−ε = [b− (−a)] = a+ b

and

∫ x0+ε

x0−ε
f ′2(x) dx = [f2(x)]

x0+ε
x0−ε = [−a− b] = −(a+ b)

Thus we have that:

f ′1(x) = (a+ b)δ(x− x0) and f ′2(x) = −(a+ b)δ(x− x0)
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Method 2: Delta Functions

First we differentiate the waveform twice.

L

1

−1

f (x)

L

4/L

−4/L

f ′(x)

L

8/L

−8/L

f ′′(x) ’area’= 8/L

f ′′(x) is a purely odd function with zero mean so we only
need to calculate bn.

f ′′(x) = 8
Lδ
(
x − L

4

)
− 8

Lδ
(
x − 3L

4

)
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To find the Fourier series for f ′′(x):

bn =
2

L

∫ L

0
sin

(
2πnx

L

)
f (x) dx

= 16
L2

∫ L
0 sin

(
2πnx
L

) [
δ
(
x − L

4

)
− δ

(
x − 3L

4

)]
dx

=
16

L2

[
sin

(
2πnL

4L

)
− sin

(
6πnL

4L

)]
(sifting!)

=

{
0 n even
32
L2
(−1)(

n+3
2 ) n odd

So the Fourier series for f ′′(x) =

32

L2

[
sin

(
2πx

L

)
− sin

(
6πx

L

)
+ sin

(
10πx

L

)
− . . .

]
We can also write this (note that 2m− 1 = n) as

f ′′(x) =
32

L2

∞

∑
m=1

(−1)m+1 sin

(
2πx(2m− 1)

L

)
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Now we integrate twice, each time setting the constant
of integration to zero so we get a waveform with zero
mean in each case.

f ′′(x) =
32

L2

∞

∑
m=1

sin

(
2πx(2m− 1)

L

)
(−1)m+1

f ′(x) =
16

πL

∞

∑
m=1

cos
(

2πx(2m−1)
L

)
2m− 1

(−1)m

f (x) =
8

π2

∞

∑
m=1

sin
(

2πx(2m−1)
L

)
(2m− 1)2

(−1)m

Which we can write out as follows f (x) =

8

π2

[
− sin

(
2πx

L

)
+

sin
(

2π3x
L

)
9

−
sin
(

2π5x
L

)
25

+ . . .

]
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Method 3: Maths Databook

Only works if something like the desired function is in the

maths data book!

L

1

−1

f (x)

x

T

1

−1

g(t)

t

In this case we want f (x) as above, and the nearest
available series is g(t).

g(t) =
8

π2

∞

∑
n=1

(−1)n+1sin ([2n− 1]ω0t)

(2n− 1)2

where ω0 = 2π/T .
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If we set x = t and L = T then f = −g .

⇒ f (x) =
8

π2

∞

∑
n=1

sin ([2n− 1]ω0x)

(2n− 1)2
(−1)n

=
8

π2

∞

∑
n=1

sin
(

2πx(2n−1)
L

)
(2n− 1)2

(−1)n

Which we can write out, as with the other methods, as

follows f (x) =

8

π2

[
− sin

(
2πx

L

)
+

sin
(

2π3x
L

)
9

−
sin
(

2π5x
L

)
25

+ . . .

]
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Section 6: Summary

an =
2

L

∫ L+α

α
cos

(
2πnx

L

)
f (x) dx

bn =
2

L

∫ L+α

α
sin

(
2πnx

L

)
f (x) dx

a0 =
1

L

∫ L+α

α
f (x) dx

f (x) = a0 +
∞

∑
n=1

[
an cos

(
2πnx

L

)
+ bn sin

(
2πnx

L

)]
for any α.

You can sometimes combine multiple integrals using
symmetry properties.

Sometimes it is faster to calculate a related Fourier series
of delta functions and integrate.

Don’t forget the Fourier series given in the Maths
Databook.
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Note: it is probably more convenient to write (as the
Maths Databook does!) ω0 = 2π/L so that our
equations for the Fourier coefficients and Fourier Series
become:

an =
2

L

∫ L+α

α
cos(ω0nx)f (x) dx

bn =
2

L

∫ L+α

α
sin(ω0nx)f (x) dx

a0 =
1

L

∫ L+α

α
f (x) dx

f (x) = a0 +
∞

∑
n=1

[an cos(ω0nx) + bn sin(ω0nx)]

for any α.
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Databook Fourier Series 1
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Databook Fourier Series 2
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Section 7

Convergence and Half-Range Series

The rule for predicting the convergence of the Fourier
series from the shape of the function is introduced.

This is used with the Fourier series for general period to
calculate series, valid over limited ranges, with improved
convergence properties. Four different series are
calculated to model the same simple function in order to
illustrate this.

The usefulness of Matlab and Octave for numerical
calculation, and the use of Matlab for symbolic algebra
are introduced.
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General Range Example 3

Following on from Section 6....

An even function f (t) is periodic with period T = 2, and
f (t) = cosh(t − 1) for 0 ≤ t ≤ 1. Sketch f (t) in the
range −2 ≤ t ≤ 4. Find a Fourier series representation
for f (t).

First remember what the graph of cosh(t) looks like.

cosh(t)

t

1
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Now plot the finite shifted cosh as a periodic function:

It is an even function ⇒ bn = 0 and an 6= 0.

The mean value of the function is non-zero ⇒ a0 6= 0.

an =
2

T

∫ 1

−1
f (t) cos

(
2πnt

T

)
dt

=
4

T

∫ 1

0
f (t) cos

(
2πnt

T

)
dt

= 2
∫ 1

0
cosh(t − 1) cos(nπt) dt (T = 2)

=
2 sinh(1)

1 + n2π2

[solve via integration by parts to form I = α + βI , where
I is our integral].
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a0 =
1

T

∫ 1

−1
f (t) dt =

2

T

∫ 1

0
f (t) dt

=
∫ 1

0
cosh(t − 1) dt = sinh(1)

So

f (t) = a0 +
∞

∑
n=1

an cos

(
2πnx

L

)

= sinh(1)

[
1 + 2

∞

∑
n=1

cos(nπt)

1 + n2π2

]
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Square Wave Series Convergence

The graphs below show the sum of 1, 2, 3 . . . up to 9
terms of the Fourier series for a square wave.

Recall f (t) = 4
π

[
sin(t) + sin(3t)

3 + sin(5t)
5 + . . .

]
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Using Matlab/Octave

% Fourier series for square wave

number = 200;

dtheta = 4*pi/number;

theta = -2*pi:dtheta:2*pi;

nharm = 20;

a0 = 0;

thing = a0 * ones(1,number+1);

for n=1:nharm

if mod(n,2) == 1

bn = 4/(pi*n);

else

bn = 0;

end

an = 0;

thing = thing + an * cos(n*theta) ...

+ bn * sin(n*theta);

plot(theta,thing);

axis([-2*pi 2*pi -1.5 1.5]);

pause(1)

end
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theta = -2*pi:dtheta:2*pi;

sets up theta as an array with 201 elements, starting at
−2π, going up to 2π, with spacing dtheta= 4π/200.

−6.2832,−6.2204, . . . . . . 6.2204, 6.2832

thing = a0 * ones(1,number+1);

initialises the 201 element array in which we hold the
value of the series at each angle. The initial value of each
element is a0, which in this case is zero.

for n=1:nharm

This introduces a for loop. We go round the loop
nharm times to add in nharm harmonics.

thing = thing + an * cos(n*theta) ...

+ bn * sin(n*theta);

This statement works on every element of the theta

array, calculating the terms of the cos and sin series and
adding them in to the appropriate sums in the thing

array.
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Using Matlab Symbolic Tools

Both convolution and Fourier work involves a lot of
integration. Sometimes it is nice to know what the right
answer is, so you can check your working. To integrate p

with respect to x from a to b you use the command
int(p, x, a, b). Consider the integral:

2

T

∫ T

0
cos

(
2πnx

T

)
x dx = 0

>> syms n x T

>> int((2/T)*x*cos(2*pi*n*x/T),x,0,T)

ans =

T*(cos(pi*n)^2-1

+2*pi*n*sin(pi*n)*cos(pi*n))/pi^2/n^2

which is

T
(
(cos(π n))2− 1 + 2 π n sin(π n) cos(π n)

)
π2n2

But as n is an integer, cos2(nπ) = 1 and sin(nπ) = 0,
so the integral evaluates to zero.

Don’t rely on this too much. You need to be able to
integrate efficiently by hand in the exam.
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Convergence Examples

The Fourier series for a
square wave converges as
1/n. Note that the function
itself is discontinuous.

−2π −π 2ππ

1

−1
t

f (t)

f (t) =
4

π

[
sin(t) +

sin(3t)

3
+

sin(5t)

5
+ . . .

]

The Fourier series for a tri-
angular wave converges as
1/n2. Here the function is
continuous, but its gradient
is discontinuous.

t

π
2

π−π

f (t)

F (t) =
−4

π

[
cos(t) +

cos(3t)

9
+

cos(5t)

25
+ . . .

]
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Convergence

Series for

delta functions

does not convergein
te

gr
at

e

Discontinuities ⇒
converges as 1/n

Discontinuous

gradient ⇒
converges as 1/n2

di
ff

er
en

ti
at

e

Discontinuous

second derivative ⇒
converges as 1/n3
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Odd Functions

If m = 1, 2, 3, 4, 5, 6, 7 . . .

and n = 2m− 1 and m =
n+ 1

2

then n = 1, 3, 5, 7, 9, 11, 13 . . .

Odd Functions

f (x) = −f (−x)
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‘Half-Range’ Series

If we want to model a signal f (x) = x in the range 0 to
T . We can use the Fourier formulae for general range to
generate a variety of different series. They will all be the
same in the range 0 to T , but some may converge faster
than others.

Full range series

period T

converges as 1/n
T 2T−T−2T

Cosine series

period 2T , bn = 0

converges as 1/n2
T 2T−T−2T

Sine series

period 4T , an = 0, a0 = 0

converges as 1/n
T 2T

−T−2T

Sine series

period 2T , an = 0,a0 = 0

converges as 1/n
T 2T−T−2T
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Normal Series, Period T

Find the Fourier series to
model f (x) = x from 0 to
T , using a series of period
T .

f (x)

T 2T−T−2T

an =
2

T

∫ T

0
cos

(
2πnx

T

)
x dx = 0

bn =
2

T

∫ T

0
sin

(
2πnx

T

)
x dx =

−T
nπ

a0 =
1

T

∫ T

0
x dx =

T

2

⇒ f (x) =
T

2
−

∞

∑
n=1

T

nπ
sin

(
2πnx

T

)

Notice that the series converges as 1/n.
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Cosine Series, Period 2T

Find the Fourier series to
model f (x) = x from 0 to
T , using a cosine series of
period 2T .

an =
1

T

∫ T

−T
cos
(πnx

T

)
f (x) dx

= 1
T

[∫ 0
−T cos

(
πnx
T

)
(−x) dx +

∫ T
0 cos

(
πnx
T

)
x dx

]
=

2

T

∫ T

0
cos
(πnx

T

)
x dx =

−4T

n2π2
, only n ODD

a0 =
1

2T

∫ T

−T
f (x) dx =

T

2

f (x) =
T

2
−

∞

∑
m=1

4T

(2m− 1)2π2
cos

(
(2m− 1)πx

T

)

Notice that the series converges as 1/n2.
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Sine Series, Period 4T

Find the Fourier series to
model f (x) = x from 0 to
T , using a sine series of pe-
riod 4T .

Notice how the function is symmetrical about T (i.e. 1
4 of

the period). This leads to bn = 0 when n is even because

all such terms are anti-symmetric about T .

bn =
1

2T

∫ 2T

−2T
sin
(πnx

2T

)
f (x) dx

=
1

T

∫ T

−T
sin
(πnx

2T

)
x dx , n odd only

=
8T (−1)(

n+3
2 )

n2π2
, n odd only

f (x) =
∞

∑
m=1

8T (−1)(m+1)

(2m− 1)2π2
sin

(
π(2m− 1)x

2T

)

Notice that the series converges as 1/n2.
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Sine Series, Period 4T

Find the Fourier series to
model f (x) = x from 0 to
T , using a sine series of pe-
riod 2T .

bn =
1

T

∫ T

−T
sin
(πnx

T

)
x dx

=
−2T

nπ
(−1)n

⇒ f (x) =
∞

∑
n=1

−2T

nπ
(−1)n sin

(πnx

T

)

Notice that the series converges as 1/n.
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Section 7: Summary

If you are modelling a limited section of a function, pick
the Fourier series period so as to get good convergence
and a series that is easy to calculate (i.e. some of an, bn
or a0 zero).
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Section 8

Complex Fourier Series

The complex Fourier series is presented first with period
2π, then with general period.

The connection with the real-valued Fourier series is
explained and formulae are given for converting between
the two types of representation.

Examples are given of computing the complex Fourier
series and converting between complex and real series.
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New Basis Functions

Recall that the Fourier series builds a representation
composed of a weighted sum of the following basis
functions.

1 (i.e. a constant term)
cos(t) cos(2t) cos(3t) cos(4t) . . .
sin(t) sin(2t) sin(3t) sin(4t) . . .

Computing the weights an, bn and a0 often involves some
nasty integration.

We now present an alternative representation based on a
different set of basis functions:

1 (i.e. a constant term)
e it e2it e3it e4it . . .
e−it e−2it e−3it e−4it . . .

These can all be represented by the term

e int

with n taking integer values from −∞ to +∞. Note that
the constant term is provided by the case when n = 0.
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Series of Complex Exponentials

A representation based on this family of functions is
called the “complex Fourier series”.

f (t) =
∞

∑
n=−∞

cne
int

The coefficients, cn, are normally complex numbers.

It is often easier to calculate than the sin/cos Fourier
series because integrals with exponentials in are usually
easy to evaluate.

We will now derive the complex Fourier series equations,
as shown above, from the sin/cos Fourier series using the
expressions for sin() and cos() in terms of complex
exponentials.
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Complex Fourier Series

f (t) = a0 +
∞

∑
n=1

[an cos(nt) + bn sin(nt)]

= a0 +
∞

∑
n=1

[
an

(
e int + e−int

2

)
+ bn

(
e int − e−int

2i

)]

= a0 +
∞

∑
n=1

(an − ibn)

2
e int +

∞

∑
n=1

(an + ibn)

2
e−int

=
∞

∑
n=−∞

cne
int

where

cn =

 a0 n = 0
(an − ibn) /2 n = 1, 2, 3, . . .
(a−n + ib−n) /2 n = −1,−2,−3, . . .

Note that a−n and b−n are only defined when n is
negative.
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an = 1
π

∫ π
−π cos(nt)f (t) dt

bn = 1
π

∫ π
−π sin(nt)f (t) dt

a0 = 1
2π

∫ π
−π f (t) dt

thus for n positive

cn =
1

2
(an − ibn)

=
1

2π

∫ π

−π
[cos(nt)− i sin(nt)] f (t) dt

=
1

2π

∫ π

−π
e−intf (t) dt

for n negative

cn =
1

2
(a−n + ib−n)

=
1

2π

∫ π

−π
[cos(−nt) + i sin(−nt)] f (t) dt

=
1

2π

∫ π

−π
e−intf (t) dt

and for n = 0

c0 = a0

=
1

2π

∫ π

−π
e−0f (t) dt =

1

2π

∫ π

−π
f (t) dt
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Complex Fourier Series: Summary

cn =
1

2π

∫ π

−π
e−intf (t) dt

f (t) =
∞

∑
n=−∞

cneint
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Complex Series: Example 1
Find the complex Fourier series to model f (t) = sin(t).

cn =
1

2π

∫ π

−π
e−intf (t) dt

=
1

2π

∫ π

−π
e−int sin(t) dt

=
1

2π

[
einπ − e−inπ

n2− 1

]
for n 6= ±1

Which is zero since sin nπ = 0 (for n 6= ±1). For
n = ±1, our integrals are

c±1 =
1

2π

∫ π

−π
e±it

(eit − e−it)

2i
dt

which can be straightforwardly evaluated to give:

c1 =
1

2i
c−1 = −

1

2i

Which means the complex Fourier series for

f (t) = sin(t) is

f (t) =
∞

∑
n=−∞

cneint =
eit − e−it

2i

As expected!!
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Complex Series: Example 2

Find the complex Fourier se-
ries to model f (x) that has
a period of 2π, and is 1
when 0 < x < T and zero
when T < x < 2π..

cn =
1

2π

∫ 2π

0
e−intf (t) dt

=
i

2πn

[
e−inT − 1

]
, when n 6= 0

=
1

2π
× area =

T

2π
, when n = 0

So the Fourier series is

f (t) =
∞

∑
n=−∞

cneint

=
1

2π

{
T +

+∞

∑
n=−∞, n 6=0

i

n

[
e−inT − 1

]
eint

}
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Converting cn to an and bn

From our example on the previous page.

cn =


i

2πn

[
e−inT − 1

]
when n 6= 0

T
2π when n = 0

We can now calculate the coefficients for the equivalent
Fourier series in terms of sin() and cos().

Clearly a0 = c0 =
T
2π . For n > 0

cn = (an − ibn)/2

⇒ an = 2Re{cn}
and bn = −2 Im{cn}

converting our expression for cn into sin() and cos():

2cn =
i

πn
[cos(nT )− i sin(nT )− 1]

=
1

πn
[sin(nT ) + i(cos(nT )− 1)]

so an =
sin(nT )

nπ
and bn =

1− cos(nT )

nπ
.
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Therefore:

Complex Fourier Series

f (t) =
1

2π

{
T +

−1

∑
n=−∞

i

n

[
e−inT − 1

]
e int

+
∞

∑
n=1

i

n

[
e−inT − 1

]
e int

}

Real Fourier Series

f (t) =
T

2π
+

∞

∑
n=1

sin(nT )

nπ
cos(nt)

+
∞

∑
n=1

1− cos(nT )

nπ
sin(nt)

Both series converge as 1/n. As they must!
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Converting from Real to Complex

Convert the real Fourier se-
ries of the square wave f (t)
to a complex series.

For the real series, we know that a0 = an = 0 and

bn =
1

π

∫ π

−π
sin(nt)f (t) dt =

4

nπ
, n odd

giving f (t) = 4
π

[
sin(t) + sin(3t)

3 + sin(5t)
5 + . . .

]
To convert to a complex series, use

cn =

 a0 n = 0
(an − ibn) /2 n = 1, 2, 3, . . .
(a−n + ib−n) /2 n = −1,−2,−3, . . .

so we have

c0 = 0
cn = −2i/(nπ) n positive and odd
cn = 2i/(−nπ) n negative and |n| odd

⇒ f (t) =
−2i

π

[
. . . +

e−5it

−5
+

e−3it

−3
+

e−it

−1

+
e it

1
+

e3it

3
+

e5it

5
+ . . .

]
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General Complex Series

For period of 2π

cn =
1

2π

∫ 2π

0
e−intf (t) dt ≡ 1

2π

∫ α+2π

α
e−intf (t) dt

f (t) =
∞

∑
n=−∞

cne
int

Similarly, for period T

cn =
1

T

∫ T

0
e−int

2π
T f (t) dt

f (t) =
∞

∑
n=−∞

cne
int 2π

T

The fraction 2π
T is often written as ω0 and called the

fundamental angular frequency (as seen previously).
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Example 1

An even function f (t) is periodic with period T = 2, and
f (t) = cosh(t − 1) for 0 ≤ t ≤ 1. Find a complex
Fourier series representation for f (t). It seems sensible to
use the cosh function that we have used previously:

cn =
1

T

∫ T

0
e−int

2π
T f (t) dt

=
1

2

∫ 2

0
e−intπ cosh(t − 1) dt

=
sinh(1)

1 + n2π2
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Hence the complex Fourier series is

f (t) =
∞

∑
n=−∞

cne
int 2π

T

=
∞

∑
n=−∞

sinh(1)e intπ

1 + n2π2

We can check this answer by computing the equivalent
real Fourier series which we calculated at the start of
section 7.

an = 2Re{cn} n = 1, 2, 3, . . .
bn = −2 Im{cn} n = 1, 2, 3, . . .
a0 = c0

In this case, as cn is entirely real,

an = 2cn =
2 sinh(1)

1 + n2π2
, n = 1, 2, 3, . . .

bn = 0

a0 = sinh(1)
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Example 2

Find the complex Fourier se-
ries of the square wave f (x).

Note that the mean of the function is zero, so c0 = 0.

cn =
1

L

∫ L

0
e−inx

2π
L f (x) dx

=
1

L

[∫ L/2

0
e−inx

2π
L dx −

∫ L

L/2
e−inx

2π
L dx

]
=

1

2inπ

[
e−2inπ + 1− 2e−inπ

]
f (x) =

∞

∑
n = −∞
n 6= 0

[
1− e−inπ

]
inπ

e inx
2π
L

f (x) =
2

iπ

[
. . . +

e−5ix 2π
L

−5
+

e−3ix 2π
L

−3
+

e−ix
2π
L

−1

+
e ix

2π
L

1
+

e3ix 2π
L

3
+

e5ix 2π
L

5
+ . . .

]
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Converting to a Real Series

We wish to convert the complex general range square
wave series into a series with real coefficients.

cn =

{
2/(inπ) |n| odd
0 |n| even

Clearly a0 = c0 = 0. For a and b use:

cn = (an − ibn)/2

⇒ an = 2Re{cn} = 0

and bn = −2 Im{cn} =
4

nπ
, n odd

Which gives us the real series:

f (t) =
4

π

[
sin

(
x

2π

L

)
+

sin
(

3x 2π
L

)
3

+
sin
(

5x 2π
L

)
5

+ . . .

]
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Section 8: Summary

For period L

cn =
1

L

∫ L

0
e−inx

2π
L f (x) dx ≡ 1

L

∫ L

0
e−inxω0f (x) dx

f (x) =
∞

∑
n=−∞

cne
inx 2π

L ≡
∞

∑
n=−∞

cne
inxω0

Relationship with the cos/sin Fourier series.

cn =

 a0 n = 0
(an − ibn) /2 n = 1, 2, 3, . . .
(a−n + ib−n) /2 n = −1,−2,−3, . . .

an = 2Re{cn} , n = 1, 2, 3, . . .
bn = −2 Im{cn} , n = 1, 2, 3, . . .
a0 = c0
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