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Fourier Series – Revision of Basics
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Real Fourier Series
Any function, g(t), which is periodic in the interval [−π,π] has a
real Fourier Series representation given by

g(t) = a0
2 + ∑∞

n=1{an cos(nt) + bn sin(nt)} (1)
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The coefficients are given by:

an =
1

π

∫ π

−π
g(t) cos(nt)dt n = 0, 1, ...,∞ (2)

bn =
1

π

∫ π

−π
g(t) sin(nt)dt n = 1, 2, ...,∞ (3)

i.e. Any periodic function can be formed from a linear combination
of the functions cos(nt) and sin(nt).
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Complex Fourier Series

An equivalent complex Fourier series representation is given by

g(t) = ∑∞
n=−∞ cne

jnt (4)

with coefficients:

cn =
1

2π

∫ π

−π
g(t)e−jntdt n = −∞, ...,−1, 0, 1, ...,+∞ (5)

We are effectively decomposing the function g(t) into its
frequency components - each ejnt is a complex oscillating
function with frequency n rad.s−1. We will focus from now on
complex Fourier series, as they are the basis for Fourier Transforms
and Discrete Fourier Transforms in later parts of the course.
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Proof of expression for coefficients

You should be familiar with how to prove the above expressions for
coefficients from 1a. The method of proof is important though for
development of Fourier Transforms later on, so we reiterate it here.
Take the complex case, for example. Multiply g(t) in
equation (??) by e−jmt and integrate wrt t from −π to π:

I =
∫ π

−π
g(t)e−jmtdt

=
∫ π

−π

∞

∑
n=−∞

cne
j(n−m)tdt [From Eq.(4)]

=
∞

∑
n=−∞

∫ π

−π
cne

j(n−m)tdt [Swap order of int. and summ.]

=
∫ π

−π
cmdt +

∞

∑
n=−∞
n ̸=m

∫ π

−π
cne

j(n−m)tdt [Separate out term n = m]
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= 2πcm +
∞

∑
n=−∞
n ̸=m

cn

∫ π

−π
ej(n−m)tdt

= 2πcm +
∞

∑
n=−∞
n ̸=m

cn

∫ π

−π
cos((n−m)t) + j sin((n−m)t)dt

= 2πcm (6)

since ∫ π

−π
cos(kt)dt =

∫ π

−π
sin(kt)dt = 0

when k is an integer not equal to 0.
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We therefore have an expression for the complex Fourier
coefficients cn;

cn =
1

2π

∫ π

−π
g(t)e−jntdt. (7)

You can prove the formulae for an and bn by a similar procedure,
but multiplying by cos(mt) and sin(mt) instead of exp(imt).
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Relationship between real and complex coefficients
By splitting Eq. (??) into real and imaginary parts we see that

2cn =
1

π

∫ π

−π
g(t) cos(nt)dt − j

1

π

∫ π

−π
g(t) sin(nt)dt = an − jbn

for n ≥ 0 (with b0 = 0).We therefore have the relationship
between the complex and real Fourier coefficients (for g(t) real):

2cn = an − jbn , 2c∗n = an + jbn for n ≥ 0 (8)

and conversely by solving for an and bn:

an = c∗n + cn , jbn = c∗n − cn for n ≥ 0 (9)

From Eq. (??) we can see that c−n = c∗n and therefore we have
from Eq. (??)

2c−n = an + jbn , 2c∗−n = an − jbn for n > 0

Finally the modulus of cn is easily obtained in terms of the real
coefficients:

2|cn| =
√
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Signals with period T
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When a periodic signal has period T rather than 2π, simply think
of ‘stretching’ the time axis by a factor of T/2π. The complex
Fourier series, for example, becomes:

g(t) =
∞

∑
n=−∞

cne
jnωot . (10)

where ωo = 2π
T - known as the ‘fundamental frequency’.
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To obtain the formula for the coefficients, substitute
2πt/T = ω0t for t into the coefficient formulae:

cn =
1

T

∫ T/2

−T/2
g(t)e−jωontdt (11)

As usual, we can redefine the range of integration to be any whole
period of g(t), e.g. α to α + T :

cn =
1

T

∫ α+T

α
g(t)e−jωontdt (12)
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Further Properties of Fourier Series

Scaling, stretching and shifting

Now consider modifying g(t) by scaling the amplitude by a factor
of a, shifting it along the axis by b and changing the period to
T ′ = βT . What is the modified Fourier series? We can write the
modified signal as:

g ′(t) = ag

(
t − b

β

)
(13)
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The Fourier series is hence

g ′(t) = ag

(
t − b

β

)
= a

∞

∑
n=−∞

cne
jωon

(t−b)
β

=
∞

∑
n=−∞

{
acne

− jωonb
β

}
e

jωont
β

=
∞

∑
n=−∞

c ′ne
jω′

ont

where the new coefficients and fundamental frequency are:

c ′n = acne
−jω′

onb ω′
0 = ω0/β (14)

Note the effects of these actions on the frequency components.
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Example: Square Wave:

Consider the square wave periodic function, amplitude 1, period
T = 1;
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Write down the Fourier series of this square wave and using this,
obtain the Fourier series of the modified square wave having
amplitude a, period T ′ = βT , and shifted along the time axis by b:
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.

−a
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The original periodic square wave can be written as the following
Fourier series (see Data Book)

g(t) =
∞

∑
n=−∞
n odd

2

jπn
ejωont ωo =

2π

T
.

Using our previous result gives directly the new Fourier coefficients:

c ′n =
2a

jπn
e−jω′

0nb for n odd

where ω′
0 = ω0/β.
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Differentiation and Integration

If we know the Fourier series representation of a function g(t)
then it is relatively straightforward to find the Fourier series for
dg (t)
dt and

∫
g(t)dt.

Suppose

g(t) =
∞

∑
n=−∞

cne
jnωot . (15)

Then, differentiating gives us

dg(t)

dt
=

∞

∑
n=−∞

(jnωocn)e
jnωot =

∞

∑
n=−∞

c ′ne
jnωot

where
c ′n = jnωocn. (16)
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Now, suppose dh(t)
dt = g(t). Integrate g(t) directly to find h(t):

h(t) =
∫

g(t)dt = c0t +
∞

∑
n=−∞
n ̸=0

cn
(jnωo)

ejnωot + k (17)

We can see that this contains a linear ramp term c0t, and so the
integral can only be a Fourier series when c0 = 0, i.e. g(t) has
zero mean.
To determine the constant of integration k , use standard Fourier
series formula for h(t) and n = 0. Thus the coefficients dn for
h(t) are:

dn =


cn

jnωo
if n ̸= 0

1
T

∫ T
0 h(t)dt if n = 0
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Example

Consider the following waveform, g(t), with height T/2 and
period T

We wish to find the Fourier series expansion for g(t) via use of one
of the standard series on the data sheet.
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We look to see if the signal is related to one of our standard
signals by differentiation or integration; in this case it is clear that
dg (t)
dt = f (t), where f (t) is the square wave of amplitude 1 and

period T , as shown in the figure.
We know from the data sheet that the Fourier series for f (t) is

f (t) =
∞

∑
n=−∞
n odd

2

jπn
ejnωot

(ω0 = 2π/T ). From the above we have the Fourier series for
g(t):

cn =


2

jπn
1

jnωo
= − T

π2n2
n ̸= 0, n odd

1
T

∫ T
0 g(t)dt = T

4 n = 0

Can check this from series for triangular wave (need to shift, scale
etc.) in the data book. See now Ex. Paper 6-6 Qqs. 1-2
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Interpretation of Fourier Coefficients

Consider the complex Fourier series for a periodic signal g(t):

g(t) =
∞

∑
n=−∞

cne
jnωot . (18)

Each complex exponential ejnωot can be regarded as a pure
frequency component of the signal - an oscillating signal
containing only sines and cosines with frequency nωot.

The component with frequency ωo is known as the fundamental
frequency, or first harmonic, 2ωo is the second harmonic, ..., nωo

is the nth harmonic.
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We can represent this frequency content graphically:
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The amplitudes r0, r1, ...,rn of the harmonics are defined by
rewriting the real Fourier series for g(t) in terms of a d.c. term
plus pure sine waves:

a0
2
+

∞

∑
n=1

{an cos(nω0t)+bn sin(nω0t)} = r0+
∞

∑
n=1

rn sin(nω0t+ϕn)

so that r0 = a0/2 and rn =
√
(a2n + b2n) by standard

trigonometric identities. From equation (??) we can therefore
express this amplitude in terms of the cn’s, for n ≥ 1:

rn =
√
(a2n + b2n) = 2|cn| ≡ |c−n|+ |cn|.

[i.e. rn contains both the negative and positive frequency
components of cn]
and, for n = 0, the DC component,

r0 = a0/2 = c0

You need this result for Ex. Paper 6/6 Q.3 !.
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These amplitudes can be related to the power content of the signal
g(t) over one period (or the average energy over one period). The
following expression holds

1

T

∫ T

0
|g(t)|2dt =

∞

∑
n=−∞

|cn|2 (19)

This is Parseval’s Theorem for Fourier series (we will come
across Parseval’s Theorem again later)

.... you will show a more general version of this on the example
sheet 6/6 Q.7 .
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Example

As a final example dealing with Fourier series we will look at
passing a periodic signal through a filter and interpreting the effect
of the filter by its action on the harmonics.

Consider a square wave of period T = 2π and amplitude 1 which
is fed into an RC circuit given below

Question: Determine the amplitudes of the harmonics of the
output waveform vo .
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Plan of Solution:

Summary of approach:

1. Obtain Fourier series for Vi → cn.

2. Find frequency response of RC-circuit H(jω) = H(s)|s=jω

3. Determine amplitude of nth harmonic at output as
2|cn| × |H(jnωo)|
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Detailed solution:
1. Find Fourier expansion of input
From the EI data book we know that the Fourier series expansion
for the input square wave, Vi , is

Vi =
∞

∑
n=−∞
n odd

2

jπn
ejnωot , ωo =

2π

T
= 1

Using the definition of harmonic amplitudes, the amplitude of the
nth harmonic is thus:

rn = 2|cn| =
4

nπ
, n = 1, 3, 5, ...

The d.c. amplitude r0 is zero. Since the square wave is an odd
function we have:

g(t) =
∞

∑
n=1,3,5,...

4

nπ
sin(nω0t)
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2. Find frequency response of the RC-circuit

Since I = (Vi −Vo)/R = C dV0
dt we can take Laplace transforms to

give

V i − V o = RCsV o =⇒ V o

V i

=
1

1+ sRC
.

We replace s by jω to obtain the frequency response:

H(jω) =
1

1+ jωRC

Recall also that if the input signal to a linear system is a sine wave

sin(ωt + θ)

and the frequency response is
H(jω) ≡ |H(jω)| exp(j arg(H(jω))), then the output signal (after
initial transients have died out) is,

|H(jω)| sin(ωt + θ + arg(H(jω)))
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3. Find effect of RC circuit on amplitude of nth harmonic

|H(jnω0)| =
∣∣∣∣ 1

1+ jnω0RC

∣∣∣∣ = 1√
(1+ n2ω2

0(RC )
2)

The nth harmonic is therefore subject to a decrease in amplitude
with increasing n. As RC increases, the amplitudes of the
harmonics are more attenuated and the waveform has the
characteristic exponential rise-and-fall form expected of this circuit
(‘low-pass filter’).

This whole process is illustrated in figure ??
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Figure 1 : a) Original square wave input, b) frequency content of the
square wave, c) frequency content modified by RC circuit, d) output
signal. Plotted for RC=0.5

See now Ex. Paper 6/6 Q.3
S. Godsill (2015), J. Lasenby (2009) 28 / 1


