4F5: Advanced Communications and Coding Handout 5: Data Processing, Fano's Inequality, **Channel Coding Converse**

Ramji Venkataramanan

Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

Michaelmas Term 2015

Data Processing and Mutual Information

Random variables X, Y, Z are said to form a Markov chain if their joint pmf can be written as

$$P_{XYZ} = P_X P_{Y|X} P_{Z|Y}.$$

In other words, the conditional distribution of Z given (X, Y)depends only on Y, i.e., $P_{Z|XY} = P_{Z|Y}$.

Markov chains often occur in engineering problems, e.g.,

- **1** Y is a noisy version of X, and Z = f(Y) is an estimator of X based only on Y
- 2 The output of the $X \to Y$ channel is fed into the $Y \to Z$ channel.

Data-Processing Inequality

If X, Y, Z form a Markov chain, then $I(X; Y) \ge I(X; Z)$. Proof: Q.7, Examples Paper I.

"Processing the data Y cannot increase the information about X" $_{2/12}$

Fano's inequality

- We want to estimate X by observing a correlated random variable Y
- The probability of error of an estimator $\hat{X} = g(Y)$ is $P_e = \Pr(\hat{X} \neq X)$
- We wish to bound P_e

Fano's Inequality

For any estimator \hat{X} such that $X - Y - \hat{X}$, the probability of error $P_e = \Pr(\hat{X} \neq X)$ satisfies

 $1 + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y) \quad \text{or} \quad P_e \ge \frac{H(X|Y) - 1}{\log |\mathcal{X}|}$

3/12

Proof of Fano

• Define an error random variable

$$E = \begin{cases} 1 & \text{if } \hat{X} \neq X \\ 0 & \text{if } \hat{X} = X \end{cases}$$

• Use chain rule to expand $H(E, X | \hat{X})$ in two different ways:

$$H(E, X|\hat{X}) = H(X|\hat{X}) + H(E|X, \hat{X})$$

= $H(E|\hat{X}) + H(X|\hat{X}, E)$ (1)

Claims:

- $H(E|X, \hat{X}) = 0$. (because E is a function of (X, \hat{X}))
- 2 $H(E|\hat{X}) \leq H(E) = H_2(P_e)$. (conditioning can only reduce H)

• $H(X|\hat{X}, E) \leq P_e \log |\mathcal{X}|$ because

$$H(X|\hat{X}, E) = \Pr(E = 0)H(X|\hat{X}, E = 0) + \Pr(E = 1)H(X|\hat{X}, E = 1)$$

$$\leq (1 - P_e)0 + P_e \log|\mathcal{X}|$$

Using the three claims in (1), we get ...

$$X \longrightarrow P_{Y|X} \longrightarrow Y \longrightarrow \text{Estimator} \longrightarrow \hat{X} = g(Y)$$

$$H(X|\hat{X}) \leq H_2(P_e) + P_e \log|\mathcal{X}|$$

Note that $H_2(P_e) \leq 1$. Therefore

 $H(X|\hat{X}) \leq 1 + P_e \log |\mathcal{X}|.$

We have proved one side of Fano.

For the other side, the data-processing inequality tells us that

$$I(X;Y) = H(X) - H(X|Y) \ge I(X;\hat{X}) = H(X) - H(X|\hat{X})$$

Thus $H(X|\hat{X}) \ge H(X|Y)$.

5	/	12	
J	/	12	

Back to the Channel Coding problem ...

Fano's Inequality applied to a channel code:

- Consider a $(2^{nR}, n)$ channel code
- \hat{W} is a guess of W based on Y^n
- *W* uniformly distributed in $\{1, \ldots, 2^{nR}\}$

•
$$P_e = \Pr(\hat{W} \neq W) = \frac{1}{2^{nR}} \sum_{k=1}^{2^{nR}} \Pr(\hat{W} \neq k | W = k)$$

Fano's inequality applied to this problem gives:

$$H(W|\hat{W}) \le 1 + P_e \log 2^{nR} = 1 + P_e nR$$

We will use this to show that any sequence of $(2^{nR}, n)$ codes with $P_e \rightarrow 0$ must have $R \leq C$.

A Little Lemma

Let Y^n be the result of passing a sequence X^n through a DMC of channel capacity C. Then

 $I(X^n; Y^n) \leq n\mathcal{C}$

regardless of the distribution of X^n .

Proof :
$$I(X^{n}; Y^{n}) = H(Y^{n}) - H(Y^{n}|X^{n})$$

$$= H(Y^{n}) - \sum_{i=1}^{n} H(Y_{i}|Y_{i-1}, ..., Y_{1}, X^{n})$$

$$\stackrel{(a)}{=} H(Y^{n}) - \sum_{i=1}^{n} H(Y_{i}|X_{i})$$

$$\stackrel{(b)}{\leq} \sum_{i=1}^{n} H(Y_{i}) - \sum_{i=1}^{n} H(Y_{i}|X_{i})$$

$$= \sum_{i=1}^{n} I(X_{i}; Y_{i}) \stackrel{(c)}{\leq} nC.$$

Justification for steps (a) - (c):

- (a) The channel is assumed to be *memoryless*. This means that given X_i , Y_i is conditionally independent of everything else.
- (b) We have

$$H(Y^{n}) = H(Y_{1}) + H(Y_{2}|Y_{1}) + \ldots + H(Y_{n}|Y_{n-1}, \ldots, Y_{1})$$

$$\leq H(Y_{1}) + H(Y_{2}) + \ldots + H(Y_{n})$$

as conditioning can only reduce entropy.

(c) From the definition of capacity, C is the maximum of I(X; Y) over all joint pmfs over (X, Y) where P_{Y|X} is fixed by the channel.

7/12

The Converse (Part 2 of the Channel Coding Theorem)

Consider any $(2^{nR}, n)$ channel code with average probability of error P_e . We have:

$$nR \stackrel{(a)}{=} H(W)$$

$$\stackrel{(b)}{=} H(W|\hat{W}) + I(W;\hat{W})$$

$$\stackrel{(c)}{\leq} 1 + P_e nR + I(W;\hat{W})$$

$$\stackrel{(d)}{\leq} 1 + P_e nR + I(X^n;Y^n)$$

$$\stackrel{(e)}{\leq} 1 + P_e nR + nC.$$

This implies:

$$P_e \ge 1 - \frac{\mathcal{C}}{R} - \frac{1}{nR}$$

Thus, unless $R \leq C$, P_e is bounded *away* from 0 as $n \rightarrow \infty$.

\cap	/	10	
9	/	14	
-	/		

Justification for steps (a) - (e):

(a) W is uniform over $\{1, \ldots, 2^{nR}\}$

(b)
$$I(W; \hat{W}) = H(W) - H(W|\hat{W})$$

- (c) Fano applied to $H(W|\hat{W})$ (see Slide 6)
- (d) Data processing inequality applied to $W X^n Y^n \hat{W}$.
- (e) From the lemma on Slide 7

Summary

 \mathcal{C} is a sharp threshold!

- For all rates R < C, there exists a sequence of $(2^{nR}, n)$ codes whose $P_e \rightarrow 0$.
- For R > C, you cannot find a sequence of (2^{nR}, n) codes whose P_e → 0.

Given a channel, do we have a practical way to communicate reliably at any rate R < C?

No, because

- Joint typical decoding is too complex to be feasible
- 2 An $2^{nR} \times n$ codebook too large to store

In the next six lectures (by Jossy), you will learn how to design good channel codes with

- Compact codebook representation
- Fast encoding and decoding algorithms

You can now do all the questions in Examples Paper 1