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Data Processing and Mutual Information

X PY |X Y Processor Z

Random variables X ,Y ,Z are said to form a Markov chain if
their joint pmf can be written as

PXYZ = PXPY |XPZ |Y .

In other words, the conditional distribution of Z given (X ,Y )
depends only on Y , i.e., PZ |XY = PZ |Y .
Markov chains often occur in engineering problems, e.g.,

1 Y is a noisy version of X , and Z = f (Y ) is an estimator of X
based only on Y

2 The output of the X → Y channel is fed into the Y → Z
channel.

Data-Processing Inequality

If X ,Y ,Z form a Markov chain, then I (X ;Y ) ≥ I (X ;Z ).
Proof: Q.7, Examples Paper I.
“Processing the data Y cannot increase the information about X” 2 / 12



Fano’s inequality

X PY |X Y Estimator X̂ = g(Y )

We want to estimate X by observing a correlated random
variable Y

The probability of error of an estimator X̂ = g(Y ) is
Pe = Pr(X̂ 6= X )

We wish to bound Pe

Fano’s Inequality

For any estimator X̂ such that X − Y − X̂ , the probability of error
Pe = Pr(X̂ 6= X ) satisfies

1 + Pe log |X | ≥ H(X |X̂ ) ≥ H(X |Y ) or Pe ≥
H(X |Y )− 1

log|X |
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Proof of Fano
Define an error random variable

E =

{
1 if X̂ 6= X

0 if X̂ = X

Use chain rule to expand H(E ,X |X̂ ) in two different ways:

H(E ,X |X̂ ) = H(X |X̂ ) + H(E |X , X̂ )

= H(E |X̂ ) + H(X |X̂ ,E )
(1)

Claims:

1 H(E |X , X̂ ) = 0. (because E is a function of (X , X̂ ))

2 H(E |X̂ ) ≤ H(E ) = H2(Pe). (conditioning can only reduce H)

3 H(X |X̂ ,E ) ≤ Pe log|X | because

H(X |X̂ ,E ) = Pr(E = 0)H(X |X̂ ,E = 0) + Pr(E = 1)H(X |X̂ ,E = 1)

≤ (1− Pe) 0 + Pe log|X |

Using the three claims in (1), we get . . . 4 / 12



X PY |X Y Estimator X̂ = g(Y )

H(X |X̂ ) ≤ H2(Pe) + Pe log|X |
Note that H2(Pe) ≤ 1. Therefore

H(X |X̂ ) ≤ 1 + Pe log|X |.

We have proved one side of Fano.

For the other side, the data-processing inequality tells us that

I (X ;Y ) = H(X )− H(X |Y ) ≥ I (X ; X̂ ) = H(X )− H(X |X̂ )

Thus H(X |X̂ ) ≥ H(X |Y ).
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Back to the Channel Coding problem . . .

W Encoder DMC PY |X
X n

Decoder
Y n

Ŵ

Fano’s Inequality applied to a channel code:

Consider a (2nR , n) channel code

Ŵ is a guess of W based on Y n

W uniformly distributed in {1, . . . , 2nR}
Pe = Pr(Ŵ 6= W ) = 1

2nR

∑2nR

k=1 Pr(Ŵ 6= k|W = k)

Fano’s inequality applied to this problem gives:

H(W |Ŵ ) ≤ 1 + Pe log 2nR = 1 + Pe nR

We will use this to show that any sequence of (2nR , n) codes with
Pe → 0 must have R ≤ C.
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A Little Lemma

Let Y n be the result of passing a sequence X n through a DMC of
channel capacity C. Then

I (X n;Y n) ≤ nC
regardless of the distribution of X n.

Proof : I (X n;Y n) = H(Y n)− H(Y n|X n)

= H(Y n)−
n∑

i=1

H(Yi |Yi−1, . . . ,Y1,X
n)

(a)
= H(Y n)−

n∑

i=1

H(Yi |Xi )

(b)

≤
n∑

i=1

H(Yi )−
n∑

i=1

H(Yi |Xi )

=
n∑

i=1

I (Xi ;Yi )
(c)

≤ nC.
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Justification for steps (a)− (c):

(a) The channel is assumed to be memoryless. This means that
given Xi , Yi is conditionally independent of everything else.

(b) We have

H(Y n) = H(Y1) + H(Y2|Y1) + . . . + H(Yn|Yn−1, . . . ,Y1)

≤ H(Y1) + H(Y2) + . . . + H(Yn)

as conditioning can only reduce entropy.

(c) From the definition of capacity, C is the maximum of I (X ;Y )
over all joint pmfs over (X ,Y ) where PY |X is fixed by the
channel.
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The Converse (Part 2 of the Channel Coding Theorem)

Consider any (2nR , n) channel code with average probability of
error Pe . We have:

nR
(a)
= H(W )

(b)
= H(W |Ŵ ) + I (W ; Ŵ )

(c)

≤ 1 + PenR + I (W ; Ŵ )

(d)

≤ 1 + PenR + I (X n;Y n)

(e)

≤ 1 + PenR + nC.

This implies:

Pe ≥ 1− C
R
− 1

nR

Thus, unless R ≤ C, Pe is bounded away from 0 as n→∞.
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Justification for steps (a)− (e):

(a) W is uniform over {1, . . . , 2nR}

(b) I (W ; Ŵ ) = H(W )− H(W |Ŵ )

(c) Fano applied to H(W |Ŵ ) (see Slide 6)

(d) Data processing inequality applied to W − X n − Y n − Ŵ .

(e) From the lemma on Slide 7

10 / 12



Summary
C is a sharp threshold!

For all rates R < C, there exists a sequence of (2nR , n) codes
whose Pe → 0.

For R > C, you cannot find a sequence of (2nR , n) codes
whose Pe → 0.

Given a channel, do we have a practical way to communicate
reliably at any rate R < C?

No, because

1 Joint typical decoding is too complex to be feasible

2 An 2nR × n codebook too large to store

In the next six lectures (by Jossy), you will learn how to design
good channel codes with

Compact codebook representation

Fast encoding and decoding algorithms
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You can now do all the questions in Examples Paper 1
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